Quasipolynomial Representation of Transversal Matroids with Applications in Parameterized Complexity
نویسندگان
چکیده
Deterministic polynomial-time computation of a representation of a transversal matroid is a longstanding open problem. We present a deterministic computation of a so-called union representation of a transversal matroid in time quasipolynomial in the rank of the matroid. More precisely, we output a collection of linear matroids such that a set is independent in the transversal matroid if and only if it is independent in at least one of them. Our proof directly implies that if one is interested in preserving independent sets of size at most r, for a given r ∈ N, but does not care whether larger independent sets are preserved, then a union representation can be computed deterministically in time quasipolynomial in r. This consequence is of independent interest, and sheds light on the power of union representation. Our main result also has applications in Parameterized Complexity. First, it yields a fast computation of representative sets, and due to our relaxation in the context of r, this computation also extends to (standard) truncations. In turn, this computation enables to efficiently solve various problems, such as subcases of subgraph isomorphism, motif search and packing problems, in the presence of color lists. Such problems have been studied to model scenarios where pairs of elements to be matched may not be identical but only similar, and color lists aim to describe the set of compatible elements associated with each element. 1998 ACM Subject Classification I.1.2 Algorithms, F.2.2 Nonnumerical Algorithms and Problems
منابع مشابه
Characterization of transversal matroids
Matroids are discrete structures that capture independence under many different flavours. Our focus here is split between affine independence and transversal set theory. It was proved by Edmonds and Fulkerson in 1965 that the set of partial transversals of a set system are the independent sets of a matroid. A first attractive feature of these matroids (thus called transversal matroids) is that ...
متن کاملOn the Complexity of Computing the Tutte Polynomial of Bicircular Matroids
We show that evaluating the Tutte polynomial for the class of bicircular matroids is #Phard at every point (x, y) except those in the hyperbola (x − 1)(y − 1) = 1 and possibly those on the lines x = 0 and x = −1. Since bicircular matroids form a rather restricted subclass of transversal matroids, our results can be seen as a partial strengthening of a result by Colbourn, Provan and Vertigan, na...
متن کاملEnumerating Spanning and Connected Subsets in Graphs and Matroids
We show that enumerating all minimal spanning and connected subsets of a given matroid can be solved in incremental quasipolynomial time. In the special case of graphical matroids, we improve this complexity bound by showing that all minimal 2-vertex connected edge subsets of a given graph can be generated in incremental polynomial time.
متن کاملCharacterizations of Transversal and Fundamental Transversal Matroids
A result of Mason, as refined by Ingleton, characterizes transversal matroids as the matroids that satisfy a set of inequalities that relate the ranks of intersections and unions of nonempty sets of cyclic flats. We prove counterparts, for fundamental transversal matroids, of this and other characterizations of transversal matroids. In particular, we show that fundamental transversal matroids a...
متن کاملComputing the minimum cut in hypergraphic matroids
Hypergraphic matroids were de ned by Lorea as generalizations of graphic matroids. We show that the minimum cut (co-girth) of a multiple of a hypergraphic matroid can be computed in polynomial time. It is well-known that the size of the minimum cut (co-girth) of a graph can be computed in polynomial time. For connected graphs, this is equivalent to computing the co-girth of the circuit matroid....
متن کامل